Divergence of Rho residue 43 impacts GEF activity
نویسندگان
چکیده
RhoA, RhoB and RhoC GTPases are over 85% identical at the amino acid level, with RhoA and RhoC differing at only one residue (43) across the initial two-thirds of their sequences. A putative regulatory distinction between the molecules is their capacity to be uniquely activated by guanine nucleotide exchange factors (GEFs). We hypothesize that variation of amino acid residue 43 between RhoA/B (valine) and RhoC (isoleucine) impacts GEF activity. Direct participation of residue 43 in GEF-catalyzed exchange was confirmed by the observation that mutation of this position to a threonine reduced GEF-catalyzed nucleotide exchange activity in vitro (Vav2, XPLN, GEFT, Dbl and Dbs) and greatly depressed RhoA and RhoC GTP-loading profiles in cell lysates. Using a residue swap approach, substitution of RhoA Val 43 with an Ile was found to significantly promote basal nucleotide exchange activity and enhance GTP-loading in cells. Substitution of Val 43 with an Ile in RhoB negatively affected nucleotide exchange in vitro. Substitution of RhoC Ile 43 with a Val increased GEF-catalyzed exchange in vitro. In addition, RhoC-I43V was more efficacious at driving ovarian cancer cell invasion through matrigrel than wild-type RhoC, RhoC-I43T, wild-type RhoA, RhoA-V43I or RhoA-V43T GTPases. These findings suggest that a divergence between RhoA/B and RhoC at residue 43 impacts basal and GEF-stimulated nucleotide exchange activity.
منابع مشابه
Identification of a negative regulatory region for the exchange activity and characterization of T332I mutant of Rho guanine nucleotide exchange factor 10 (ARHGEF10).
The T332I mutation in Rho guanine nucleotide exchange factor 10 (ARHGEF10) was previously found in persons with slowed nerve conduction velocities and thin myelination of peripheral nerves. However, the molecular and cellular basis of the T332I mutant is not understood. Here, we show that ARHGEF10 has a negative regulatory region in the N terminus, in which residue 332 is located, and the T332I...
متن کاملA High-Throughput Assay for Rho Guanine Nucleotide Exchange Factors Based on the Transcreener GDP Assay.
Ras homologous (Rho) family GTPases act as molecular switches controlling cell growth, movement, and gene expression by cycling between inactive guanosine diphosphate (GDP)- and active guanosine triphosphate (GTP)-bound conformations. Guanine nucleotide exchange factors (GEFs) positively regulate Rho GTPases by accelerating GDP dissociation to allow formation of the active, GTP-bound complex. R...
متن کاملThe Y-box factor ZONAB/DbpA associates with GEF-H1/Lfc and mediates Rho-stimulated transcription
Epithelial tight junctions recruit different types of signalling proteins that regulate cell proliferation and differentiation. Little is known about how such proteins interact functionally and biochemically with each other. Here, we focus on the Y-box transcription factor ZONAB (zonula occludens 1-associated nucleic-acid-binding protein)/DbpA (DNA-binding protein A) and the Rho GTPase activato...
متن کاملp21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor.
GEF-H1 is a guanine nucleotide exchange factor for Rho whose activity is regulated through a cycle of microtubule binding and release. Here we identify a region in the carboxyl terminus of GEF-H1 that is important for suppression of its guanine nucleotide exchange activity by microtubules. This portion of the protein includes a coiled-coil motif, a proline-rich motif that may interact with Src ...
متن کاملGEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases.
Formation of the mitotic cleavage furrow is dependent upon both microtubules and activity of the small GTPase RhoA. GEF-H1 is a microtubule-regulated exchange factor that couples microtubule dynamics to RhoA activation. GEF-H1 localized to the mitotic apparatus in HeLa cells, particularly at the tips of cortical microtubules and the midbody, and perturbation of GEF-H1 function induced mitotic a...
متن کامل